Search results

Search for "Salvinia molesta" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • iron. Therefore, biological external surfaces that strongly repel liquids appeared to be suitable, particularly the hair cover of the water fern Salvinia molesta and the surface of Collembola (an arthropod group). It turned out, however, that it was not feasible to realise the functional structures of
  • furnace; Collembola; gas/liquid interfaces; interfacial effects; persistant air layers; pits; Salvinia molesta; surfaces; tuyère failure; water transport in plants; xylem; Young–Laplace equation; Introduction and Motivation The basic concept of biomimetics is the derivation of technical applications from
  • water spider or the floating fern Salvinia molesta (and other Salvinia species), and their surfaces have an appearance similar to that of terrycloth. Both the Lotus effect and the surfaces with stay-dry-under-water potential became – after their introduction into biomimetics – popular items for the top
PDF
Album
Perspective
Published 17 Nov 2022

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • most complex plant surfaces is exhibited by the giant floating fern Salvinia molesta (Figure 1a,b). With its elastic egg-beater-like shaped trichomes and chemical heterogeneities [5], the fern is capable of maintaining a stable air layer underwater for several weeks. Another example is the backswimmer
  • sputter-coated onto the surface to enhance their conductivity. Biological role models of air-retaining Salvinia effect surfaces. a) The floating fern Salvinia molesta has one of the most complex surface structures in plants. Reproduced with permission from [5], copyright 2010 Wiley-VCH Verlag GmbH & Co
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • ) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method
  • cantilevers, reproducing the spring constants calibrated using other methods. Keywords: adhesion; AFM cantilever; air layer; capillary forces; hairs; measurement; micromechanical systems; microstructures; Salvinia effect; Salvinia molesta; sensors; stiffness; superhydrophobic surfaces; Introduction Surface
  • approach. Prominent examples are the trichomes of the floating fern Salvinia molesta, which are responsible for the high air layer persistence of its leaves under water [1][2][3]. Artificial surfaces capable of retaining air under water have great potential in fluid transportation or as ship hull coatings
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

  • Matthias J. Mayser,
  • Holger F. Bohn,
  • Meike Reker and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2014, 5, 812–821, doi:10.3762/bjnano.5.93

Graphical Abstract
  • Salvinia molesta floating on water. The leaf surface is densely covered with complex superhydrophobic “egg-beater” hairs. The height of the hairs decreases towards the margin of the leaf. An applied water droplet resides on the tips of the hairs without sinking between the hairs. Air volume per surface
PDF
Album
Full Research Paper
Published 10 Jun 2014

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • inflow velocities between 1.5 m/s and 3.5 m/s the fraction of air covered surface is reduced only marginally by 10% (70% at 3.5 m/s). Even at high flow velocities of 5.0 m/s, 61% of the surface initially covered with air is still intact. In comparison, the water fern Salvinia molesta, which is another
  • fluctuation. Therefore, a similar mechanism as described for the eggbeater shaped structures of Salvinia molesta [12] occurs. The penetration of the water requires energy for creating the larger contact area between the hydrophobic setae and water. The bending of the setae might also enable a flexible
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities